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A technique is described for solving the radial flow problem of underground water 
by the application of a similarity transformation when all the requirements for the 
application of such a transformation are not met. The transformed equation involves 
a stray time variable which is interpreted as a system parameter. When this parameter is 
properly interpreted, the solutions of the transformed system are very good numerical 
approximations for the solutions of the original system. The technique was checked for 
many different nonconstant diffusivities. The advantage of solving the transformed 
system is the great saving in computer time, since no marching process is involved. 

1. INTRODUCTION 

A useful mathematical technique in the study of radial flow of underground 
water or of the radial heat conduction in a circular plate is the application of 
Boltzmann’s similarity transformation [I]. To apply this transformation rigorously 
to the radial flow problem several requirements must be satisfied. One of these 
requirements is that the dependent variable (such as the moisture content or the 
temperature of the plate) must have a logarithmic singularity when the radius 
is zero. There are important radial flow problems which do not satisfy this boundary 
condition but which do satisfy the other requirements for the application of the 
similarity transformation. These problems will be the subject of this paper. 

A Boltzmann type transformation is applied to the partial differential equation 
and the corresponding initial and boundary conditions describing the radial flow. 
The resulting system is an ordinary differential equation whose solution must 
satisfy two boundary conditions. Since all of the requirements necessary for 
the rigorous application of the transformation were not met, the time variable 
will occur either in the differential equation or in one or both of the boundary 
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conditions. In this paper the idea of local similarity is that the time variable T 
in the transformed system plays the role of a fixed parameter. This fixed parameter 
is related, in some manner, to an actual time Tl in the original system. Thus, 
if a particular moisture or temperature distribution with respect to the radius 
is desired for a given time Tl , the transformed two-point boundary value problem 
is solved for the value of the parameter T = f(TJ. The advantage of this method 
is a great saving in computer time since a marching process is not needed to solve 
the transformed system. Therefore, one of the important objectives of this paper 
is the determination of the relationship T = f(Tl) which will give an acceptable 
approximation to the original system. 

In Section 2 the physical problem is briefly formulated. Two possible Boltzmann 
type transformations are formulated in Section 3, and the corresponding trans- 
formed systems are given. In Section 4 the solutions for the linear problem 
(constant diffusivity) are listed for both the original and transformed systems. 
Several possible choices for the relationship T = f(Tl) are given in Section 5. 
In Section 6 the numerical solutions for the two systems are described and 
compared for several different forms of the diffusivity. Finally, Section 7 lists 
the conclusions arrived at from this study. 

2. PHYSICAL PROBLEM 

Since this study originated from the investigation of the radial flow of under- 
ground water [2], the physical problem will be expressed in terms of soil moisture 
variables. The differential equation describing the plane radial movement of soil 
moisture through an isotropic medium without gravity is given as 

8, = i [d(e) e,], 

where r is the radial distance, t the time, 8 the volume of soil water per volume 
of soil, and D = b(e), the soil moisture diffusivity. 

The auxiliary conditions which 8 must satisfy are 

Nr, 0) = 4 , r>a>O, 

eta, t) = 4, t 3 0, (2) 

e(a, 0 = 4 , t 3 0, 

where a, O1 , and 0, are positive constants. When 0, > 0, , moisture moves away 
from the boundary at r = a as t increases and is thus known as the “source 
problem.” The “sink problem” is the name used when 8, < 0, . 
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For convenience the soil moisture is normalized as follows: 

D(e) = D*(x). 

Based on the physics of the problem it is reasonable to impose the following 
conditions on the diffusivity over the range of values 0 < X < 1: 

0 < G&l d D*(h) d Giax , 
dD*/dh continuous over (0, I), 

dD*/dA < 0, if 0, > e, , 
dD*/dA > 0, if e, < 0, , 

where D& and D;nax are constants. 
The system defined by (1) and (2) is nondimensionalized 

nondimensional terms 

T = D&d 
a2 ’ 

R-5, 

AR, T> = h(r, t), 

(4) 

by making use of the 

(5) 

where T is a nondimensional time and R is a nondimensional radius. Combining 
(11, (21, (31, and (5) gives 

YT = $ W(Y) YRIR (6) 

where 
Y(R 0) = 1, R > 1, 

Am, 0 = 1, T 3 0, (7) 

~(1, T) = 0, T 2 0. 
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The problem to be analyzed in this paper is defined by (6) and (7), with diffusivities 
satisfying the conditions in (4). 

3. TRANSFORMATIONS 

One Boltzmann type transformation which can be applied to (6) and (7) is 
given by 

R2 
X=-P (8) 

A-9 = J@> 0. 

Substituting (8) into (6) and (7) results in the following two-point boundary value 
problem: 

[xD(y) y’]’ + xy’ = 0, 

v(m) = 1, T > 0, 

&&)=o, T > 0, 

where the primes indicate differentiation with respect to x. Since T occurs explicitly 
in one of the boundary conditions in (9), the system described by (6) and (7) 
does not possess a similarity solution of the type specified in (8). But all is not 
lost; if T is “properly interpreted,” the numerical solution of (9) can be shown 
to be an excellent approximation to the solution of (6) and (7) for a large family 
of different dilfusivities. The comparison of these numerical solutions will be 
discussed in Section 6 and the “proper interpretation” of T will be discussed 
in Section 5. 

Another possible transformation is given by 

R2- 1 
Z=T’ 

~(4 = Y@, T). 

Combining (6) (7) and (10) gives 

N z + &) WY’] + ZY’ = 0, 

(10) 

(11) 
UC=)> = 1, T > 0, 
Y(O) = 0, T > 0. 



204 DRAKE AND ELLINGSON 

In this case the parameter T occurs in the differential equation rather than in 
the boundary conditions. 

From numerical computations we found that the solutions for (9) and (11) 
were very nearly the same for all values of X, for several different diffusivities, 
and for all T > 0.001. Thus in the remainder of this paper we will consider only 
the transformation (8) and the resulting system (9). 

4. LINEAR PROBLEM 

In (6) and (9) replace D(y) by 

D(y) = D, = Max[l, A/2]. (12) 

The solution of (6), (7), and (12) is given in Carslaw and Jaeger [3] and in Crank [4]. 
In terms of the notation in this paper the solution is 

y(R, T) = 1 jm A,(T,u) C,,(u,Ru)du (13) 
0 

where 
exp[--D1Tu21 

Ao(TT @ = u[Jo2(u) + Yo2(u)] ’ (14) 

COG4 w = J,(u) Yo(Ru) - Y,(u) Jo(Ru), 
and where J,(u) and Y,(u) are Bessel functions of order zero and of the first and 
second kind, respectively. 

The amount of diffusing substance crossing a unit area of the surface at R = 1 
in unit time is proportional to the partial derivative of y with respect to R, 
evaluated at R = 1. This expression is given by 

Z(T) = f jm A,(T, u)du. 
0 

(15) 

In the next section we will use Z(T) in one of the formulations for the relationship 
T =f(T,). In [5], Jaeger and Clark discuss some of the asymptotic properties 
of (7r2/4) Z(T) and also list a short table of numerical values for it. 

Combining (9) and (12) gives 

D,(xy’)’ + (xy’) = 0. (16) 
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The solution of (16) which satisfies the boundary conditions in (9) is given by 

EkG,) 
‘@) = ’ - E,(1/4D,T) 

where 

(17) 

Tables of values for this well-known exponential integral, E,(x), are given in 
Pagurova [6]. 

5. PARAMETER T IN (9) 

The object of this paper is to find a reasonably good approximation to the 
solution of (6) and (7) for a fixed time TI by using the system defined in (9). If 
this is possible, a great saving in computer time is then feasible because no 
“marching process” is required to arrive at time TI , as is the case in solving 
the partial differential equation. The manner in which the solution of (9) is related 
to the solution of (6) and (7) for a fixed time TI is outlined in the following: 
replace Tin the boundary condition in (9) byf(T,); solve (9) for y as a function 
of x; then plot these values of y vs. R = d4f(T,)x; this is the approximation 
to the solution of (6) and (7) for fixed TI . 

Since T is being considered as a system parameter in (9), a question then arises, 
“how is T related to TI , or what is the fin T =f(Ta?“. The authors know of 
no uniquefand in fact there probably is none. But through the vehicle of numerical 
experiment, we found two good candidates. 

Probably the most obvious choice of f is the identity function, namely, 
f(TJ = TI . This is the choice used in [2] where Drake et al. found that the 
solution of the linear problem for (9) approached the solution of the linear problem 
for (6) and (7) uniformly in R as T -+ co. But for small T the difference between 
the two solutions was significant. This was also true for three different nonconstant 
diffusivities. Thus, a better candidate for f was desired; one which would give a 
more uniform approximation in T, as well as in R. 

The two successful candidates which we consider in this paper are based on 
the linear problems discussed in Section 4. The first of these candidates for f is 
obtained by equating the slopes of y(R, T) and v(x) at R = 1, for a fixed TI . 
Since the functions in (13) and (17) already satisfy common boundary conditions 
for any T, the above requirement is an added restriction which should result 
in a better approximation than that obtained for f(Td = TI . As we will see 
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in Section 6, this is in fact the case. An implicit formula for this new f(T+,) is 
obtained from (15) and (17), namely, 

I(G) = 
2 

E1 [ 4Dl;(Tl) exp 4D,;(T,) I [ 1 
(19) 

Given the value of Tl , (19) can be solved iteratively for f(Tl). These values of 
f(TJ will then be used for the cases when D(y) is nonconstant. 

The second of these candidates forf is determined from the equations 

Jo1 3 Tl) = j$ = Y (-g&y). 

The reason for using 9/10 (although somewhat arbitrary) is based on the fact 
that the difference between y(R, TJ in (13) and y(R2/4T,) in (17) is maximum 
in the neighborhood of y(R, , Tl) = 9/10. Thus Eq. (20) is an added restriction 
which will force y(R, T) in (13) and y(Re/4f(T) in (17) to be closer to one another 
for all R and T. Given Tl , the value of R, can be obtained from (13) and (20), 
namely, 

9n 
20= () s m A,@‘, ,u) C&, W du. (21) 

Once R, is known, f(Td can be obtained from (17) and (20), giving, 

f(TA = 
R12 

4D1E,-’ [ik E1 ( 4D,;(T,) )I 
, (22) 

where E;‘(x) is the inverse of E,(x). In solving for R, in (21), the numerical tables 
given in Jaeger’s paper [7] and in Goldenburg’s paper [8] are very useful. Equation 
(22) can be solved for f (Tl) by an iterative procedure. 

6. NUMERICAL SOLUTIONS 

A. Finite Range for R 

For obvious reasons the upper limit for R in (7) and (9) must be replacediby 
a finite value of R, say R, . Thus, the conditions in (7) are redefined as 

~(4 0) = 1, 1 <R<R,, 

AR,, T) = 1, T 2 0, (74 
~(1, T) = 0, T > 0. 
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The new system replacing (9) is 

W(y) y’l’ + XY’ = 0, 

y(g) = 1, T>O, 

y(-&-)=o, T>O. 

(94 

The new initial-boundary value problem defined by (6) and (7a) possesses a 
nontrivial steady-state solution. It is easy to see that the implicit form of this 
solution is given by 

where 

R = R;“‘, (23) 

p(y) = D(Y) - ml 
d(l) - S(0) ’ 

dfi( u) - = D(y). 
du 

(24) 

For a given D(y), the numerical solution of (6) and (7a) should approach the 
expression in (23) as T becomes large. Thus (23) can be used to partially check 
the accuracy and stability of a finite-difference scheme used to solve (6) and (7a). 
It can also be used to check the reliability of using (9a) in place of (6) and (7a). 

B. D#erence Schemes for (6) 

We used two implicit finite-difference approximations to (6). The first of these 
is given by 

Ri(~i.j+~ - ~i.i) = 2 h-l + & Yi+1.i + Y&j Yi+l*j+l - Yi.i+1 

&+I Ai+1 + Ai [ 2 -D( 2 1 A. 2+1 

- Ri -I- &-I D 
2 ( 

Yi.j + Yi-i-9 Yi, j+l - Y&l, j+l 
2 ) 1 Ai ’ (251 

where 

yi,i = Y(& 3 Tj), 

Ai = R, - Riwl , (26) 

6.j = Tj - Tj-1 . 

If Ai+l = Ai = AR, Sj+r = AT, Ri+l and &_I are replaced by R, , and D(y) = 
u = constant, then (25) reduces to formula three listed on p. 189 of 191. For 
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this reduced system the difference equation is always stable and the truncation 
error is defined by 

e = O(AT) + o[(ARy]. (27) 

The difference equation in (25) was solved by an iterative point method; see 
[IO, pp. 24, 251. The first approximation is obtained from the matrix equation 
resulting from (25) and all latter approximations are obtained from a Gauss-Seidel 
iteration scheme, given below: 

yi”j’:l = Aijyj2;1;+l + B. .y!“) 23 z+l.f+l + Gj 9 (28) 

Ri f Rip1 
pij= A. D 

z 

y$ = nth iterate of y(Ri , Tj). 

This iteration scheme, (28) and (29), uses the most recent iterates as soon as they 
become available; this improves the rate of convergence of the process as opposed 
to methods which do not do this. 

The other finite-difference scheme which we used was motivated by formula 
nine on p. 190 of [9] and by the treatment of the nonlinear equation 

Ut = (u5>,, (30) 

on pp. 201-203 of the same reference. The resulting difference equation is given by 

* (Yi.i+l - Yi.j) - j$- (Y&j - Yi.i-I> 
3 

2 
= Ai+1 + Ai [ Ri+112 {[Bli+l,j + iIDli+I.j (Yi+l.j+l - Yi+l.j> - l16Jij Ai+1 

- Lolid (Yi.i+l - Yi.i)> - R,_,i, {CD&3 + EDltj (Yi.j+l - Yii) di 

- CDli-I,j - [Dlt-1.5 (Yi-1.5-!-l - Yi-l.i)q (31) 
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where 

[D]ij = D(Yfj). 

If A,,, = A, = AR, 8j+1 = 83 = AT, Ri+liB and Rf--112 are replaced by & , 
D(y) = (T = constant, and D(y) = uy, then (31) reduces to formula nine on 
p. 190 in [9]. For this reduced system the difference equation is always stable 
and the truncation error is defined by 

e = 0[(AT)2] + 0[(AR)2]. (33) 

The reason that the expression D(y) is present in (31) is that (6) was written as 

RYT = [Rifi(~)hI~ (34) 

and then differenced in the same manner as (30), see [9]. Thus, considering (33) 
and the form of (34), one would expect that (31) is a higher order difference 
equation in time than (25) and might expect (31) to give some improvement in 
the space differencing. 

A Gauss-Seidel iteration, similar to that given in (28), was used to solve the 
difference equation in (31). 

C. Difference Scheme for (9a) 

Since (9a) defines a two-point boundary value problem, a “shooting method” 
approach was used in its numerical solution. The difference equation is 

h+1) 
Xi(Yj+1 - yb”-:“> + 

y'"'l + y!"' 
xj+l ? ,"i ( y;h;l) _ yfZ+l') D ( 3+ 2 

xj+1 3 

3 ) 

where ~6”’ is the nth iterate of y(xi). The initial guess was taken to be 

(35) 

D. SpeciJic Examples 

In order to test the central idea of this paper, namely, replacing (6) and (7a) by 
(9a), we considered twenty-two different expressions for D(y). The D(y)% which we 
considered are as follows: (1) D(y) = 1 + (A - 1) yP and D(y) = A - (A - 1) yP 
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for P = l/4, l/3, l/2, 1, 2, 3, and 4; (2) D(y) = max[l, A/2]; (3) D(y) = AY 
and Al-‘; (4) three diffusivities containing an inflection point; and (5) two 
logarithmic diffusivities. For the numerical computations the value of A was 
taken to be 200, which is a representative value for soil moisture problems (see 
Table I in [2]); and the value for R, was taken to be 1000. 

Even though the linear analogues of the differencing systems used in this study 
are always stable, this is not always the case for nonlinear systems. Thus, to 
insure stability and to obtain good resolution, the following variable time and 
space increments were used: 0 < T < 0.004, AT = 0.0001; 0.004 < T < 1, 
dT=O.OOl;l ~T~1OO,dT=0.01;100<T~500,dT=0.1;500~T~ 
20,000, AT = 10; 1 < R < 10, AR = 0.1; 10 < R < 100, AR = 1; 100 < R < 
1000, AR = 10. 

Since our main objective was to compare the solutions of (9a) with those of (6) 
and (7a), we were conservative in our choice of time and space increments and 
in the number of iterations used in the solutions of the difference equations. 
In (25) and (31), we used 3 iterations (when 1 or 2 were sufficient); and in (35) 
and (36), we used 20 iterations (when 10 would have been enough). 

E. Solutions for f (TJ 

Figure 1 gives the three relationships between T1 and f (TJ discussed in Section 5. 
In solving (19) for f (T,), the tables for I(Tl) given in [5] and the tables for E1(X)eX 
given in f67 were used. The tables and asymptotic values presented in [7] and [S] 
were used to solve for R, in Eq. (21). Given the values of R, , (22) was solved 
for f (TJ using the tables for E,(X) given in [I 11. 

F. Comparison of Solutions for the Original and Transformed Systems 

In our study, as mentioned above, we considered twenty-two different expressions 
for the diffusivity, D(y). Space limitations allow us to only report some repre- 
sentative values; these are given in Tables I, II, and III. The results for the 
diffusivities not reported in this paper are similar to those discussed below with 
no exception. 

In Table I, the numerical solutions of (6) and (7a) are compared with those 
of (9a) for various values of R and T and for three different diflusivities. The 
diffusivity D = 200~ is one of the extreme “sink” cases considered in this study; 
D = 200-r is one of the extreme “source” cases; and D = 1 + 199y1j4 gives 
results which are nearly the same as those for D = 100. The numerical values 
denoted by P.D.E. are from the solutions of (6) and (7a) based on (25) and (28). 
For the transformed system, (9a), three sets of values are given. The values denoted 
by f = Tl , fig, and fiz are, respectively, those given by the numerical solution 
of (94 for f(K) = Tl , f (Tl) g iven by (19), and f (T,) given by (22). 

When f(T1) = Tl , the solutions of the transformed system approach those 
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Fig. 1. Relationships for f( T1) vs. Tl . 

TABLE I 

Comparison of Solutions for Various T’s and Various Diffusivities 

For D = 2oOr and T = 0.01 

Values of y(R, T) 

R P.D.E. f= T, f 1s ha 

1.2 
1.4 
1.6 
1.8 
2 
4 

0.709 0.818 0.729 0.761 
0.800 0.876 0.805 0.831 
0.851 0.910 0.850 0.872 
0.885 0.933 0.880 0.900 
0.909 0.949 0.902 0.920 
0.990 0.996 0.981 0.988 

For D = 200-Y and T = 0.01 

1.2 0.067 0.122 0.067 0.082 
1.4 0.150 0.336 0.147 0.190 
1.6 0.271 1.000 0.253 0.361 
1.8 0.589 1.000 0.421 0.814 
2 0.990 1.000 0.813 l.ooo 
4 1.000 1.000 1.000 1.000 
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For D = 1 + 199~~1~ and T = 0.01 

R P.D.E. f’== Tl f 19 fzz ~- 

1.2 
1.4 
1.6 
1.8 
2 
4 

0.215 0.274 0.207 
0.353 0.439 0.338 
0.460 0.559 0.438 
0.548 0.651 0.518 
0.621 0.723 0.584 
0.945 0.977 0.900 

For D = 2OOY and T = 10 

0.229 
0.371 
0.479 
0.564 
0.634 
0.936 

1.2 
1.4 
1.6 
1.8 
2 
4 
8 

20 
40 
80 

0.439 0.444 0.439 
0.540 0.545 0.540 
0.598 0.603 0.597 
0.637 0.642 0.637 
0.667 0.672 0.666 
0.793 0.798 0.792 
0.867 0.872 0.867 
0.934 0.938 0.933 
0.970 0.973 0.969 
0.992 0.994 0.991 

For D = 200-u and T = 10 

0.440 
0.541 
0.599 
0.638 
0.667 
0.794 
0.868 
0.935 
0.970 
0.992 

1.2 
1.4 
1.6 
1.8 
2 
4 
8 

20 
40 
80 

0.012 0.012 0.012 
0.022 0.023 0.022 
0.032 0.033 0.032 
0.040 0.042 0.041 
0.049 0.051 0.049 
0.115 0.120 0.114 
0.217 0.230 0.215 
0.617 0.721 0.592 
1.000 1.000 1.000 
1.000 1.000 1.ooo 

For D = 1 + 199y1i4 and T = 10 

0.012 
0.022 
0.032 
0.040 
0.049 
0.116 
0.217 
0.618 
1.ooo 
1.000 

-___ 
1.2 
1.4 
1.6 
1.8 
2 
4 
8 

20 
40 

0.078 
0.128 
0.168 
0.202 
0.230 
0.403 
0.558 
0.745 
0.872 

0.079 
0.131 
0.172 
0.206 
0.235 
0.412 
0.569 
0.759 
0.883 

0.078 
0.129 
0.169 
0.203 
0.230 
0.402 
0.557 
0.743 
0.867 

0.078 
0.128 
0.168 
0.201 
0.231 
0.404 
0.560 
0.747 
0.871 

Values of y(R, T) 

80 0.966 0.971 0.961 0.963 
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TABLE I (continued) 

For D = 2W and T = 10,000 

Values of y(R, T) 

R P.D.E. 

1.2 0.353 
1.4 0.451 
1.6 0.508 
1.8 0.547 
2 0.576 
4 0.702 
8 0.776 

20 0.844 
40 0.883 
80 0.915 

200 0.950 
400 0.973 
800 0.994 

J’= Tl fi9 hz 

0.354 0.354 0.354 
0.451 0.451 0.451 
0.508 0.508 0.508 
0.546 0.546 0.546 
0.575 0.575 0.575 
0.701 0.700 0.700 
0.776 0.776 0.775 
0.844 0.844 0.844 
0.883 0.883 0.883 
0.916 0.916 0.916 
0.952 0.951 0.951 
0.975 0.974 0.974 
0.994 0.994 0.994 

For D = 200-y and T = 10,000 

1.2 
1.4 
1.6 
1.8 
2 
4 
8 

20 
40 
80 

200 
400 
800 

0.006 0.006 0.006 
0.011 0.011 0.011 
0.015 0.015 0.015 
0.019 0.019 0.019 
0.022 0.023 0.022 
0.048 0.048 0.048 
0.077 0.078 0.077 
0.125 0.126 0.124 
0.171 0.173 0.170 
0.232 0.236 0.231 
0.363 0.372 0.362 
0.601 0.627 0.593 
1.000 1 .ooo 1.000 

For D = 1 + 199~~1~ and T = 10,000 

0.006 
0.011 
0.015 
0.019 
0.022 
0.048 
0.077 
0.124 
0.170 
0.231 
0.361 
0.591 
1.000 

1.2 0.053 0.054 0.053 0.053 
1.4 0.088 0.088 0.088 0.088 
1.6 0.115 0.116 0.116 0.116 
1.8 0.138 0.139 0.139 0.139 
2 0.158 0.159 0.159 0.159 
4 0.276 0.277 0.277 0.277 
8 0.382 0.384 0.384 0.384 

20 0.512 0.515 0.515 0.515 
40 0.605 0.609 0.609 0.609 
80 0.694 0.699 0.699 0.699 

200 0.808 0.814 0.813 0.813 
400 0.892 0.897 0.897 0.897 
800 0.974 0.976 0.976 0.976 
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given by (6) and (7a) as T becomes large. For the other two choices of f(T,), 
the transformed solutions and those of (6) and (7a) agree more uniformly with 
respect to T, as well as R. The choice offi as opposed to fiz depends on whether 
one wants the best agreement between the original and transformed systems in 
the neighborhood of R = 1, or in the neighborhood of y = S/10. 

In Table II, numerical values for the steady solutions of (6) and (7a) are given 
for the same three diffusivities. These values were obtained from (23) and (24). 
Comparing the values for T = 10,000 in Table I with those in Table II we see 
that for D = 200~ and D = 1 + 199y1/4 the solutions at T = 10,000 are for 
all practical purposes the “steady-state” solutions. As was the case for some 
of the other “source” problems, the solution for D = 2001-g takes much longer 
to approach the steady-state solution. But if the computations are continued 
long enough, the steady-state solutions are approached for all the diffusivities 
studied. 

TABLE II 

Steady-State Values for Various Diffusivities 

Values of y(R, T) 

R D =2CO D = 2@)1-v D = 1 + 199~~1~ 

1.2 0.348 0.006 0.054 
1.4 0.448 0.009 0.089 
1.6 0.506 0.013 0.116 
1.8 0.546 0.017 0.139 
2 0.575 0.020 0.159 
4 0.701 0.042 0.276 
8 0.776 0.067 0.382 

20 0.843 0.107 0.512 
40 0.883 0.143 0.605 
80 0.915 0.189 0.694 

200 0.950 0.272 0.808 
400 0.973 0.375 0.892 
800 0.994 0.622 0.974 

In Table III, the two difference schemes for (6) and (7a) given in (25) and (31) 
are compared for D = 1 + 199y4 and D = 2001-v. Since scheme (31) is slower 
than (25) and since the two schemes give nearly the same results for D = 2001-Y, 
scheme (25) was used for most of the above computations. For D = 1 + 1999, 
the system given by (31) appears to be more accurate since its numerical solution 
checks the steady-state solution closer than that given by (25). From the above 
discussion concerning (27), (33), and (34), one might expect this result. 
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TABLE III 

Comparison of Difference Formulas (25) and (31) 

Values of y(R, T) for D = 1 + 199y4 

T = 0.01 T=l T= 100 T = 10,000 Steady 
R state 

cm (31) (25) (31) (25) (31) (25) (31) 

1.2 0.765 0.687 0.602 0.541 0.513 0.470 0.471 0.438 0.439 
1.4 0.825 0.781 0.661 0.624 0.575 0.550 0.536 0.517 0.518 
1.6 0.864 0.834 0.700 0.672 0.614 0.595 0.575 0.561 0.561 
1.8 0.892 0.871 0.728 0.706 0.641 0.626 0.603 0.591 0.591 
2 0.914 0.897 0.750 0.731 0.662 0.649 0.624 0.614 0.615 
4 0.990 0.989 0.854 0.846 0.761 0.755 0.721 0.716 0.716 
8 1.000 1.000 0.921 0.918 0.826 0.822 0.783 0.780 0.780 

20 1.000 1.ooo 0.980 0.979 0.889 0.886 0.844 0.842 0.842 
40 1.000 1.ooo 0.998 0.998 0.926 0.925 0.880 0.879 0.880 
80 1.000 1.000 1.000 1.000 0.958 0.957 0.912 0.911 0.911 

200 1.ooo 1.ooo 1.ooo 1.000 0.989 0.989 0.948 0.947 0.947 
400 1.000 1.000 1.000 1.000 0.999 0.999 0.972 0.971 0.971 
800 1 .ooo 1.000 1.000 l.ooo 1.000 l.ooo 0.993 0.993 0.993 

Values of y(R, T) for D = 2o01-’ 

1.2 0.067 0.068 0.017 0.017 0.009 0.009 0.006 0.006 0.006 
1.4 0.150 0.152 0.033 0.033 0.016 0.016 0.011 0.011 0.009 
1.6 0.271 0.271 0.048 0.048 0.023 0.023 0.015 0.015 0.013 
1.8 0.589 0.484 0.062 0.063 0.029 0.029 0.019 0.019 0.017 
2 0.990 0.961 0.076 0.076 0.035 0.035 0.022 0.022 0.020 
4 1.ooo 1.000 0.205 0.206 0.079 0.079 0.048 0.048 0.042 
8 1.000 1.000 0.626 0.626 0.135 0.135 0.077 0.077 0.067 

20 1.000 1.000 l.ooo 1.ooo 0.252 0.252 0.125 0.125 0.107 
40 1.000 1.000 1.000 1.000 0.439 0.439 0.171 0.171 0.143 
80 1.000 1.000 1.ooo 1.000 0.999 0.999 0.232 0.232 0.189 

200 1.000 1 .ooo 1.000 1.000 1.000 1.ooo 0.363 0.364 0.272 
400 1.000 1.000 1.ooo 1.000 1.000 1.000 0.601 0.601 0.375 
800 1.000 l.ooo 1.000 1.000 1.ooo 1.ooo 1.000 1.000 0.622 

For the time and space increments given above and for all the diffusivities 
studied, the difference schemes for the original system and the transformed system 
were numerically stable. Also, the difference systems were all asymptotically 
stable, in the numerical sense, with respect to the steady-state solution. That is, 
once the numerical solution became stationary in time it would not move from 
this stationary solution, no matter how many time steps were taken beyond this 
point. This was true for the difference schemes for (6) and (7a) and for (9a). The 
stationary solutions were in all cases very nearly equal to the steady-state solutions 
given by (23) and (24). 
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7. CONCLUSIONS 

The main result of this paper is that the initial-boundary value problem given 
by (6) and (7a) can be replaced, in an approximate sense, by the two-point boundary 
value problem in (9a) through the vehicle of the similarity transformation defined 
by (8). Since time T occurs in a boundary condition in (9a), there is no similarity 
solution of (6) and (7a) of the type specified in (8). But if Tin (9a) is interpreted 
as a parameter in a “proper way,” the numerical solutions of (9a) are in very 
good agreement with those of (6) and (7a) for a large class of diffusivities, D(y). 
This method of approximating the numerical solution of (6) and (7a) for a given 
time Tl saves a great deal of computer time since a “marching process” is not 
required to get to time Tl , as is the case in solving the partial differential equation. 

In validating the above numerical technique, two difference schemes for solving 
the initial-boundary value problem in (6) and (7a) were proposed, see (25) and (31). 
These difference schemes were stable for the diffusivities considered in this study. 
Also, since a finite range was required for the space variable in the numerical 
calculations, the system defined by (6) and (7a) possesses a nontrivial steady-state 
solution. The two difference schemes are asymptotically stable in a numerical 
sense with respect to these steady-state solutions. This is also true of the numerical 
solutions for (9a). 

Another important application of the present study is that certain qualitative 
results about the solutions of (9) can be obtained rather easily from the differential 
equation itself. These results, in turn, can be applied to the solutions of (6) and (7), 
at least in an approximate sense. For example in [2], Drake et al. proved some 
theorems concerning various monotonicity properties of the transformed system. 
These properties carry over to the original system for certain forms of the diffusivity. 

The type of “Iocal similarity” considered in this paper is related to the local 
similarity of boundary layer theory (see [12]) where the time variable in [12] 
is replaced by the distance along the body. The authors of this paper feel that 
the technique considered here can be applied to many other problems in physics. 
One problem which the authors are considering currently is the vertical drainage 
problem in ground water flow; and in the future, the coagulation equation of 
aerosol and cIoud physics will be considered. 

The technique considered in this paper can be summarized in the following way: 

1. A physical problem is formulated in terms of a partial differential equation 
(or possibly an integrodifferential equation) and certain auxiliary conditions, such 
as initial and boundary conditions. The equation also is dependent upon certain 
system parameters. In the radial flow problem the system parameter is the soil 
moisture diffusivity D(y). In order that the physical problem be mathematically 
well-posed, the solutions of the system should be continuously dependent upon 
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the initial and boundary conditions and the system parameters (see [13] 
and [14]). 

2. The original system is assumed to satisfy some but not all of the requirements 
for the existence of a similarity solution. The transformation corresponding to 
this similarity solution is applied to the original system. Any “stray” independent 
variable in the new system is converted to a time parameter, f(T,), through the 
use of the similarity transformation, 

3. The nonlinearity of the original and transformed system is due to the variation 
of the system parameters with the dependent variable, for example, D(y) in Eq. (6). 

4. The time parameterf(T,) is determined from the corresponding linear systems, 
that is, the systems corresponding to constant parameters. The actual choice of 
f(Td depends on the region where one wants the best agreement between the 
original and transformed systems. For example, in the present problem if one 
is most interested in the rate of inflow or outflow at R = 1, the f(T1) given by 
(19) should be used. 

5. As in the present problem, this technique will be most economical for 
problems which must be solved repeatedly for different formulations of the system 
parameters. In the radial flow of soil moisture, diffusivities are experimentally 
determined and their formulations are given graphically or by empirically deter- 
mined formulas. Thus, the problem discussed in this paper will be solved many 
more times in the future. Therefore, there is a question concerning the accuracy 
of the present technique of solving this problem. 

6. For the radial flow problem, and for other well-posed physical problems, 
the continuous dependence of the solutions on the system parameters can be 
used to advantage in checking the accuracy of the local similarity concept for 
the various formulations of the parameters anticipated in a given problem. The 
authors of this paper feel that the numerical checks given for the three widely 
different diffusivities in Table I are sufficient for assessing the quantitative errors 
which will occur in applying the local similarity concept to the radial flow problem 
for the various formulations of D(y) which a soil physicist may consider. 

7. Our recommendation for the application of this technique to other physical 
problems is to check the accuracy of the approximation for the “extremes” of 
the system parameters and for one slightly nonlinear case. If the accuracy of 
these results is allowable for the physical problem under consideration, the 
“continuous dependence property” of the system will allow one to use the local 
similarity concept for other formulations of the system parameters. In the radial 
flow problem, D = 200~ is an extreme “sink” case; D = 200-Y is an extreme 
“source” case; and D = 1 + 199y1’* is a “slightly nonlinear” case which gives 
results nearly equal to those for D = 100. 



218 DRAKE AND ELLINGSON 

Finally, the authors of this paper wish to report that we did check the local 
similarity concept for a family of diffusivities, twenty in number, which vary in a 
“continuous manner” from D = 200r to D = 2001-v. The results of this study 
verify the statements made in items 6 and 7 of the above summary. (These 
numerical solutions will be published elsewhere.) Thus, we stand by our recom- 
mendation in item 7 whenever this technique is applied to other problems. 
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